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Abstract

This paper outlines the creation of a real-time system for identifying Indian Sign Language (ISL)
alphabet movements from webcam video. By converting hand signals into on-screen text, the
goal is to assist close the communication gap for Deaf and hard-of-hearing people. A
ResNet50-based deep learning model was trained using a dataset of roughly 51,000 static ISL
alphabet pictures combined and supplemented under transfer learning. With especially good
results on most letters and slight misunderstanding between visually identical signs (e.g., "J"
and "K"), the final classifier attained about 96% accuracy on unseen data. Combining live video
capture (OpenCV) with the trained model, a prototype application was built in Python. For
instant text conversion, users keep each sign momentarily in view. Under appropriate lighting
and hand location, informal tests revealed great accuracy. Although the present system only
supports the ISL alphabet, it shows the viability of Al-driven sign language recognition using
conventional computer resources. Possible improvements are including text-to-speech or
automated hand tracking, covering words and phrases, and handling dynamic gestures. This
approach provides a hopeful basis for future assistive tools that support more inclusive
communication.
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Glossary

Artificial Intelligence (Al): Computer systems capable of performing tasks that typically require
human intelligence, such as visual perception, speech recognition, decision-making, and
language translation.

Convolutional Neural Networks (CNNs): A class of deep neural networks specifically
designed for analyzing visual imagery, widely used in image recognition tasks.

Data Augmentation: Techniques used to artificially increase the size and diversity of a dataset
by applying transformations like rotations, flips, zooming, or color adjustments to existing
images.

Deep Learning: A subset of machine learning involving neural networks with multiple layers,
enabling complex pattern recognition and feature extraction directly from raw data.

Dropout: A regularization method in deep learning used to prevent overfitting by randomly

setting a fraction of input units to zero during training.

Early Stopping: A technique to halt training when validation performance stops improving,
thereby preventing the model from overfitting.

Feature Extraction: Process of transforming raw data into informative, non-redundant features

suitable for analysis and modeling.

Fine-Tuning: Adjusting the weights of a pre-trained neural network slightly by training it further
on a new, typically smaller, dataset.

Gesture Recognition: The ability of computers to interpret human gestures, typically involving

hand movements, as meaningful inputs.

Global Average Pooling: A neural network operation that averages each feature map, reducing
dimensionality and computational load, commonly used before the final classification layers.

Hidden Markov Models (HMMs): Statistical models used for representing probability
distributions over sequences, previously common in gesture recognition tasks.



Indian Sign Language (ISL): The predominant sign language used in India, comprising both
static and dynamic hand gestures.

MediaPipe: An open-source framework by Google used for real-time multimedia processing,
often utilized for hand landmark detection.

OpenCV: Open-source computer vision library widely used for real-time image and video
processing.

Overfitting: A scenario in machine learning where a model learns the training data too closely,
capturing noise rather than generalizable patterns, leading to poor performance on new data.

Real-Time Inference: Process of making predictions from a trained model instantly as new data
arrives, typically used for interactive applications.

Residual Networks (ResNet): A CNN architecture featuring skip (residual) connections that
help train deeper networks by mitigating issues like vanishing gradients.

Skip Connections: Connections in neural networks that bypass one or more layers, aiding
gradient flow and enabling training of deeper networks.

Sparse Categorical Cross-Entropy: A loss function used in multi-class classification tasks to
measure the discrepancy between predicted probabilities and true class labels.

Static Gestures: Hand signs involving a single fixed hand position, as opposed to dynamic
gestures that involve motion.

Support Vector Machines (SVMs): A supervised machine learning algorithm used primarily for
classification tasks, based on finding an optimal hyperplane between different categories.

TensorFlow: A widely-used open-source machine learning framework for developing and
training neural network models.



Transfer Learning: Technique of leveraging a pre-trained model (usually trained on a large
dataset) to perform a related task, reducing training time and improving performance on smaller
datasets.

Validation Accuracy: Measurement of a model's performance on a validation dataset,
indicating its ability to generalize to unseen data.

Vanishing Gradients: A problem in training neural networks where gradients become very
small, slowing or halting learning, particularly in deeper networks.



1 - Introduction

Sign languages go much beyond simple hand gestures. To express concepts in ways similar to
spoken languages, they mix facial emotions, hand shapes, and body position (ljsrem.com,
2023). Sign languages range across many areas much as spoken languages do: in the United
States, people use American Sign Language (ASL), but in India, the main sign language is
called Indian Sign Language (ISL), also known as Indo-Pakistani Sign Language (Vashisth et
al., 2023).

Though ISL has its own grammar and comprises both one-handed and two-handed signs, it is
still not common beyond the Deaf community. This lack of knowledge beyond the Deaf
community causes a difficult communication gap. Roughly 18 million people in India are Deaf or
hard of hearing; many of them rely on ISL in their everyday lives (ljsrem.com, 2023). Still, just a
tiny percentage of the general population can speak this language. Worldwide, more than 5%
of people (over 430 million) suffer from hearing loss (World Health Organisation, 2024). Most of
the time, bridging that gap depends on human interpreters. But without someone to translate,
Deaf individuals can be left out of conversations, job opportunities, and even classrooms.

1.1 - Project Motivation

The simple guiding concept of this initiative is to use useful technology to close the
communication gap between ISL users and the larger world. Imagine a system that, in real
time, watches someone's signing via a camera and translates those motions into text or
perhaps speech, so Deaf or hard-of-hearing people may engage in discussions without relying
just on interpreters (Deora and Bajaj, 2019). Recent developments in deep learning and
computer vision allow the automatic recognition of complex hand motions (Zhang and Jiang,
2024). This initiative particularly emphasises ISL not only because India has a sizable Deaf
population but also because ISL itself has traditionally gotten less technological focus than
languages like ASL (ljsrem.com, 2023). The research also helps to more global efforts in
assistive communication by addressing a vital local issue.

1.2 - Aim and Objectives

This project is to develop a real-time tool that translates ISL motions from a camera stream into
text or, when practical, spoken output. The project aims to do this by setting out to:



Review current gesture recognition techniques and datasets.
Create and train a deep learning model particularly with ResNet50
Translate from video frames to text form in real time.

Measure the accuracy and responsiveness of the system.

ok~ N~

Find any constraints and suggest ways to improve them.

Although this first version focusses on the ISL alphabet, it lays the groundwork for a more
complete system able to translate ISL words and sentences in real time.

Report Structure: This report is organized into several chapters following the handbook format.
Chapter 2 presents a Literature Review outlining pertinent works on gesture detection, current
sign language datasets, and deep learning techniques related to the project. The Methodology
is covered in Chapter 3, which also covers the real-time system's implementation, training
methods, data preprocessing techniques, ResNet50 model design decisions, and dataset
compilation.  Showing accuracy and loss curves, sample predictions, a confusion matrix
analysis, and live testing insights—including any technical limitations such as camera latency—
Chapter 4 offers the Results and Evaluation. Reviewing the timeline, the Gantt chart, task
organisation, and lessons learnt from the process, Chapter 5 reflects on how the project was
planned and managed. Reflecting on both system limits and possible extensions, Chapter 6
ends with the major results and recommendations for next developments.

10



2 - Literature Review

2.1 - Gesture Recognition Systems:

Early research in gesture recognition explored both hardware-based (Farooq et. al., 2019) and
vision-based approaches. One classical approach was to outfit the signer with special gear like
data gloves. These gloves were packed with flex sensors and motion trackers that could pick up
on hand movements and finger bends (Chin, 2020). The idea was to convert these gestures into
digital signals that could be interpreted by a system. A great example of this is a project by
bioengineers at UCLA. They created a “smart glove” that could recognize American Sign
Language (ASL) alphabet gestures and translate them into speech using a smartphone (Chin,
2020).

Despite being fairly accurate, glove-based systems, come with their own set of problems
(Kudrinko et. al., 2020). First, the hardware isn’'t exactly subtle or comfortable. Wearing a wired-
up glove just to have a conversation isn’t ideal. Plus, these devices usually only track the hands,
which leaves out a huge part of sign language like facial expressions, body posture, and other
non-manual signals that are integral to many sign languages. Some critics have pointed out that
these kinds of systems miss the deeper complexity of sign languages. According to (Erard,
2017), it's not just about hand positions; it's about context, flow, and grammar. So while gloves
gave researchers a good starting point, they weren't exactly built for natural, everyday
communication (Ahmed et al., 2018).

Due to these factors, modern systems have shifted towards vision-based approaches. Instead
of making the signer wear something, these systems just use a camera to watch and interpret
gestures. The vision-based gesture recognition system aligns well with how humans perceive
sign languages. It's a more intuitive method and one that can potentially pick up on the full
range of movements, expressions, and signals. With the rise of computer vision and machine
learning, especially deep learning, we've seen a big leap in what’s possible (AL-Qurishi et. al.,
2021). These systems can now analyze video or images and identify gestures with growing
accuracy (Vashisth et al., 2023).
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But it's not without challenges. For instance, different signers have varying hand shapes, skin

tones, and signing speeds; gestures can involve one or both hands (ISL, in particular, employs
two-handed signs for certain letters/words); and the background environment may clutter the
image. Furthermore, some signs are static (defined by a single hand configuration and position)
while others are dynamic (characterized by a sequence of motions). For instance, in ISL, the
alphabet contains static hand postures for most letters but a few letters may require motion
(Singh, 2022). The ISL sign for “J,” for example, is made by tracing a J-shape in the air.
Recognizing that correctly means understanding motion, not just a single image.

Even with all these hurdles, the field has made solid progress. Early vision-based systems
leaned on image processing techniques like segmenting out hand regions using skin-color
detection (often in HSV color space), extracting shape or trajectory features, and using classical
machine learning algorithms like Hidden Markov Models (HMMs) or Support Vector Machines
(SVMs) for classification. Such approaches often required carefully hand-engineered features,
and while they worked okay in controlled settings, they often struggled to handle larger
vocabularies or more diverse real-world conditions.

2.2 - Sign Language Datasets

A crucial foundation for any sign language recognition system is the availability of a labeled
dataset of sign examples. Datasets enable the training and evaluation of machine learning
models. In the case of ASL, several datasets have been made available. These datasets
contain everything from thousands of static hand sign images (like fingerspelling alphabets) to
large-scale video datasets capturing continuous signing (e.g., the ASL Lexicon Video Dataset or
datasets from sign language recognition competitions). These resources have propelled ASL
recognition research forward in a big way.

But when it comes to Indian Sign Language (ISL), the story is different. Historically, there’s been
a serious lack of large, publicly available ISL datasets. Most researchers working on ISL had to
create their own datasets from scratch, often focusing on a small number of signs, maybe just
alphabets, numerals, or a limited vocabulary of common words (Saini et al., 2023)

That said, things have started to improve in recent years. Authors of (ayeshatasnim-h, 2020), for
instance, compiled a dataset of ISL alphabet images, about 12,700 in total, by combining self-
collected images with contributions from volunteers. This dataset covered all 26 alphabet signs
(A to Z), and after data augmentation, each class ended up with around 486 images. The
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dataset was then split into training and test sets for model development. The creators
mentioned that no comprehensive ISL dataset was available when they began, which is why
they built one themselves.

Another major step forward came from (Singh, 2022), who published a much larger ISL static
gesture dataset. This one includes over 100,000 images spanning English alphabets, Hindi
vowels, and numerals. What's great is that it was collected from a diverse group of participants
kids, teens, and adults and captured under a range of lighting conditions and backgrounds. That
kind of variation is crucial for building models that generalize well.

The availability of such a comprehensive dataset is very recent and represents a positive
development for ISL research; however, handling such a large volume of data turned out to be
challenging for a student project with limited computing resources.

2.3 - Challenges with ISL Datasets

One of the biggest hurdles in ISL research is the inconsistency between datasets. Since most
researchers build their own, it's tough to compare results directly across different studies. Each
dataset might vary in background, lighting, signer hand shape, or even how a sign is performed,
which makes generalization tricky (Saini et al., 2023). And small datasets can lead to models
that perform well in training but fail in real-world use, especially if they overfit to specific patterns
like a particular signer’s hand shape or a static background (Raheja et. al., 2016). Moreover,
sign language datasets have to consider class balance. Ensuring each sign is well-represented.
If some gestures have fewer training samples, the model may perform poorly on them. There is
also the question of dynamic vs static signs: datasets of static images (like alphabets held as a
pose) are easier to collect (one can take photos of posed signs) and annotate, whereas
datasets for dynamic signs or continuous signing require video and often detailed annotation at
the frame level or sequence level. For this project, decision was made to focus on static,
isolated gestures like the alphabet. That simplifies things into an image classification task
instead of a sequence recognition problem. But even with static gestures, there’s still a lot of
variation. Different people might perform the same sign in different ways with different hand
orientations, distances from the body, or even finger spacing. Capturing that variety in the
dataset is critical for building a reliable model.
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Table 1. Pre-existing datasets on Indian Sign Language recognition
(Reproduced from (Saini et al., 2023) under CC BY 4.0 license.)

Sr. No Name Provider Year Reason Reference

1 | Indian Sign Language Arikeri P 2020 = Dark background, lack of Arikeri (2021)

(ISL) variations, duplicate
images

2 Indian Sign Language Dumbre A 2022  Lack of variety, duplicate Dumbre (2022)
(ISLRTC referred) images

3  ISL-CSLTR: Indian Sign Elakkiya R, 2021 @ Videos and sentence- Natarajan and
Language dataset for Natarajan B based, which was not the Elakkiya (2021)
continuous Sign goal of this work

Language Translation
and Recognition

4 | Indian Sign Language Sonawane V 2020 @ Duplicate images Sonawane
Dataset (2020)

5 Indian Sign Language Kumar K 2022 = Bad quality, no variety Kumar (2022)
Dataset recognized by
ISRTC

Allin all, the literature makes it clear: building or accessing a diverse, high-quality dataset is one
of the toughest parts of working with sign language recognition — especially for under-
resourced languages like ISL. In our project, we tackled this by applying data augmentation
techniques and using transfer learning (Gupta et. al., 2022) to get the most out of a limited
dataset.

2.4 - Deep Learning Approaches for Sign Language Recognition

The emergence of deep learning has revolutionized pattern recognition tasks, including sign
language gesture recognition (Zhang and Jiang, 2024). Among the most powerful tools in this
space are Convolutional Neural Networks (CNNs), which have shown outstanding performance
in image classification tasks. They've been widely used to recognize static hand gestures, like
fingerspelling letters or numbers, and when trained on a decent dataset, they can achieve
impressively high accuracy (Vashisth et al., 2023). The advantage of CNNs is their ability to
automatically learn discriminative visual features (edges, shapes, etc.) from raw pixel data
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through the process of convolution and pooling, eliminating the need for manual feature
extraction. For instance, Nandi et al. (2022) implemented a CNN for ISL alphabet recognition
and reported high accuracy, demonstrating that a well-designed CNN can distinguish between
the 26 hand signs effectively when trained on a sufficient dataset.

As gesture datasets grow and recognition tasks get more complex, deeper CNN architectures
have become the go-to (Gupta et. al.,, 2024). One standout model is ResNet-50, a 50-layer
residual network introduced by He et al. (2015) back in 2015. ResNet'’s innovation was in adding
skip (or residual) connections, a clever trick that helps the model train deeper networks without
running into problems like vanishing gradients. This design was so effective that ResNet-50
actually won the ImageNet challenge that year (Wikipedia contributors, 2025).

In the context of sign recognition, researchers have experimented with using pre-trained
networks like ResNet50, InceptionV3, VGG16/VGG19, etc., often via transfer learning (Hore et.
al.,, 2015). A comparative study by Saini et al. (2023) evaluated several popular CNN
architectures (VGG-16, VGG-19, ResNet-50, DenseNet-201, InceptionV3, MobileNetV2,
Xception) on a custom ISL dataset (Saini et al., 2023). Their findings indicated that ResNet-50
outperformed the other models for ISL gesture classification, achieving an accuracy of about
98.25% (with an F1-score of 99.34%) on their test set (Saini et al., 2023). They noted that
although ResNet50 was slower to train and infer (due to its depth), its accuracy was
exceptional, reportedly achieving over 99% on their test data. This aligns with other reports in
literature where ResNet-based models have reached high 90s accuracy for static sign
recognition tasks (Saini et al., 2023). The success of ResNet50 is attributed to its ability to learn
very rich feature representations of the hand gestures, aided by the skip connections that
mitigate vanishing gradient issues in deep nets (Mukti and Biswas, 2019).

Now, while ResNet50 is great for static gesture recognition, things get trickier when you move
into continuous signing — where a series of gestures form a full sentence. In those cases, you
need models that can understand sequences over time. That's where Recurrent Neural
Networks (RNNs), especially Long Short-Term Memory (LSTM) networks, come in (Baihan et

al., 2024). For example, a system might use a CNN (e.g., ResNet) to extract frame-wise
features and then feed those into an LSTM to recognize a sequence of gestures comprising a
word or sentence (Baihan et al., 2024). More recently, researchers have started experimenting

with attention mechanisms and even Transformer models (which originated in Natural Language
Processing). These models are great at handling sequences of varying lengths and can pay
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attention to different parts of the gesture sequence, making them promising for sign language
translation (Zhang and Jiang, 2024). That said, they’re also data-hungry. And unfortunately,

large, annotated ISL video datasets are still pretty rare.

For the scope of this project, we’re focused on recognizing individual ISL gestures in real time,
not full sentence sequences. So, a deep CNN like ResNet50 fits perfectly (since starting from
ImageNet pre-trained weights can significantly boost performance when data is limited). It's
already proven in the literature, especially for static image recognition, and offers the kind of
accuracy we need (Saini et al., 2023).

There are also a few best practices from existing research that we’ve followed, including: Image
augmentation to artificially expand the dataset with rotated, flipped, or color-shifted images
(Vashisth et al., 2023) and careful fine-tuning (Hossain et. al., 2022) of the model to avoid
overfitting. Some studies also explore augmentation beyond simple flips/rotations, such as
varying background or lighting via synthetic means, to make the model more robust to real-
world conditions. Regularization techniques like dropout are also common to help the model
generalize better (Vashisth et al., 2023).

Since our project initially focuses on the alphabet, which in ISL has mostly one-handed signs
(with a few exceptions that might use both hands), the CNN can be trained to recognize the
single hand shape in focus. For two-handed signs, approaches sometimes involve detecting
each hand separately or using multi-channel inputs (one for each hand) into the model. While
our project does not dive that deeply into multi-hand modeling, the need to handle two-handed
gestures is on the radar for future work.

2.5 - Summary

To summarize, the literature review highlights the following key points relevant to our project:

Why This Problem Matters:

There’s a clear and pressing need to bridge communication gaps for Deaf communities. Sign
language recognition systems have gained attention because they offer the potential to make a
real social impact. They make communication more inclusive and accessible for millions (Zhang
and Jiang, 2024).
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What Has Been Tried Before:

Both hardware (glove-based) and vision-based methods have been explored over the years.
While glove-based setups can be accurate, they’re not exactly user-friendly. On the other hand,
Vision-based methods are more natural and user-friendly. That said, they do come with their
own challenges.

The ISL Datasets:

A big challenge with Indian Sign Language has been the lack of large, public datasets. While the
situation is slowly improving thanks to recent contributions, many researchers still have to
create their own datasets.

Deep Learning and ResNet50:

Deep learning, particularly CNN like ResNet50, has become the go-to solution for static gesture
recognition. These models consistently achieve 95%+ accuracy when paired with transfer
learning (Saini et al., 2023). The fact that CNNs can automatically learn visual features (without
us having to manually define them) makes them incredibly powerful compared to older methods.

Common Challenges Noted:

The literature points out recurring challenges like varying lighting conditions, cluttered
backgrounds, and differences in how individuals perform signs. Some systems try to clean up
the input first using techniques like background subtraction or color thresholding to isolate the
hand. Others rely on CNN’s ability to cut through the noise. A few recent approaches use tools
like MediaPipe or keypoint detection to extract hand landmarks before classification. It is a
slightly different method than ours, but one worth exploring in the future.

Overall, the research helped guide key decisions in our project. For example, the choice of
ResNet50 for our model was influenced by its strong performance reported in the task (Saini et
al., 2023). Given the constraints of time and computing, we scoped the project to isolated letters
rather than full sentence recognition.

17



3 - Methodology
3.1 - Dataset Collection

Given the scarcity of readily available ISL datasets, we assembled a dataset appropriate for
training the gesture recognition model. The focus was specifically on the ISL alphabet 26 static
hand gestures representing the letters A to Z. These are commonly used as a base in sign
language recognition systems. They involve distinct shapes that are relatively easy to collect
and can be used to spell out any word.

The dataset for this project was obtained through a combination of existing image sources and
self-collection:

Existing ISL Alphabet Images: To create the dataset for this project, an existing open-source
ISL alphabet dataset was used. The dataset is available at https://www.kaggle.com/datasets/

vaishnaviasonawane/indian-sign-language-dataset. It contains 1200 images for each letter class
(A - Z) which made the total initial database to be of 31,200 images. It also contained numbers
(0 - 9), but since the project focused on the alphabets, those classes were dropped. Moreover,
the data was labeled by alphabet letter. Each image contains hands showing the letter sign
against a plain black background.

Self-Collected Samples: In addition to existing data, we collected our own images for certain
gestures to introduce more variation. Using a Macbook Pro’s webcam, multiple pictures were
taken of myself, performing each alphabet sign (except “Q”) (Code in Appendix A). It was
ensured to avoid over-reliance on any one environmental setting. For example, aspects such as
lighting and hand orientations were varied. Approximately 800 images per letter class were
added through this process.

In the end, the dataset contained of roughly 51,000 images, each corresponding to a letter from
A to Z. It is worth noting that many signs in ISL differ from those in American Sign Language
(like the signs for “T” or “H”). But we weren’t comparing the languages linguistically. Thus, each
hand gesture was treated simply as a unique class for the model to recognize.

The collected dataset was split into training and validation sets:

Training set: 80% of the images (40663 images) were used for model training. This split was
stratified so that each letter had a proportional representation in train/val/test, maintaining class
balance across splits.
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Validation set: 20% of the images (10165 images) were set aside for validation during training.
The validation set was used to monitor the model’s performance on unseen data and tune
hyperparameters (such as learning rate or to decide when to stop training to avoid overfitting).
While the dataset works well for our current project, it is still limited in scope:

1. While it can spell out words, it doesn't include full word signs, which are crucial for real-world
conversations.

2. The backgrounds are either black (in case of the existing dataset) or minimal (added
dataset). This helps the model train cleanly but may limit its performance in real-world
environments that are more complex.

3. All signs are static, so gestures involving movement (like the letter “J”) aren’t represented.

Despite all this, the dataset is sufficient to train a model to recognize the 26 alphabet gestures
with high accuracy. serving as a proof-of-concept for ISL gesture recognition. It works well as a
proof of concept, and future versions can easily build on this base by adding new sign types.
Future expansions of the dataset could include numerals, common ISL words, and dynamic
gestures.

Figure1. Curated Dataset.
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3.2 - Data Preprocessing

Raw images from the two sources had varying resolutions and backgrounds. Preprocessing
steps were applied to standardize the input data for ResNet50 and to highlight the hand shapes:
Resolution and Cropping: All images were resized to a uniform resolution suitable for the input.
Although ResNet50 is typically designed for 224x224x3 input images (Saini et al., 2023), it was
decided to resize all images to 180x180 pixels. The images had three color channels using
TensorFlow’s image_dataset_from_directory(). This resizing is applied uniformly to all images,
regardless of their original dimensions (ranging from 128x128 to 1920x1080). This helped us to
retain important visual details and maintain computational efficiency during training.

Color Space Normalization: Things were kept simple when it came to color; all images were
used in their original RGB format, just as the ResNet50 model expects. While some studies
suggest converting to HSV (Vashisth et al., 2023), we tested both and found no major accuracy
difference for our setup. Thus we stuck with RGB for simplicity. ResNet’s built-in function,
preprocess_input(), was used for preprocessing the data. Doing this ensured that the training
and evaluation were fully aligned with the model's expectations. It gave us clean, consistent

feature extraction right from the start.

Background Simplification: No fancy background removal algorithm (like chroma key or
segmentation masks) was applied while building the model because the backgrounds of the
images were already plain and clutter-free.

3.3 - Data Augmentation

After basic preprocessing, data augmentation was performed on the training set. Augmentation
is, basically, creating slightly tweaked versions of existing images to make the model more
robust. The following augmentation was used:

Geometric Transformations: Random training images had undergone random rotations (roughly
36 degrees). This was done to handle the edge cases where the signer’s hands were not
perfectly aligned with the camera. In other images, Horizontal flips were done to help the model
recognize and predict the sign correctly, regardless of which hand is used. Furthermore, to
mimic different camera distances and hand sizes, the images were crammed or zoomed out.
These transformations were made so that the model focuses on the gesture shape and not the
position/orientation of the hand.
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Apart from that, to keep the project simple and efficient, advanced augmentation setups were
not used. Using shifts, cropping, color jitter, and blur would make the dataset and the model
more robust. Also, these augmentations were ONLY applied to the training dataset. This

ensured that the model was evaluated against the original images.
3.4 - Model Architecture: ResNet50 for Gesture Recognition

For the core task of recognizing ISL hand gestures, ResNet50 emerged as the best option
(Saini et al., 2023). ResNet50 is a deep CNN with 50 layers that introduced residual learning
blocks. In simpler terms, ResNet introduced a trick known as skip connections. These add the
input of a layer to the output of a deeper layer, helping the network avoid problems like
vanishing gradients and lets it go deep without getting stuck (Wikipedia contributors, 2025).

3.4.1 - ResNet50’s Architecture

It starts with a few convolutional layers and pooling. Then comes 4 stages of convolutional
residual blocks (each made up of several smaller residual layers). Finally, it wraps up with global
average pooling and a fully connected (dense) layer that spits out a classification. The
ResNet50’s architecture is shown in Figure 1, along with the schematic of the Residual
Learning Block (building block of the ResNet).

— Figure 2. ResNet50 model
wentLaver | | Architecture
0 ngRyL E (Reproduced from (Saini et al.,
| N 2023) under CC BY 4.0 license.)

+
Fx) ¢ Relu

Residual Learning Block

ANV NRVAN

Max-Pool

224 x224x3
P9'AUCD i L
P9'AUOD' L L
Y9'AUCD’L. L
P9'AUCD’ L L
$9'AUCD'E,E
$OAUCD L, L

w
IS
X

>,
>
>

& | Avg-Pool | =

$9'AUOD'L.L
$9'AU0D' L. L
$9'AU0D'E.E
Y9'AUCD'L.L

=)
S
)

$9'AU0D L. L
$9'AUCD'E.E

%)
o
2

21



3.4.2 - Customizing ResNet50

Originally, ResNet50’s output layer was designed to classify 1,000 different categories from the
ImageNet dataset (like dogs, airplanes, and buildings). But the project doesn't need that.
Therefore, the original output layer was removed, and a new custom head was added. It had
softmax activation to produce a probability distribution across all classes. This new head will
now guess the output only from the 26 letters. After that, a GlobalAveragePooling2D layer was
added. This layer helps to reduce the amount of data while keeping the most important features
learned by the model. This was followed by a Dense layer with 256 neurons and RelLU
activation. This allows the model to learn complex patterns. An L2 regularization was added to
prevent the model from overfitting. For context, overfitting is something that happens when a
model memorizes the training data too closely. It performs well in the training stage but poorly in
the validation stage.

A Dropout layer with a dropout rate of 0.5 was added to further reduce the chance of overfitting.
This randomly turns off 50% of the neurons in that layer during each training step. All images
were resized to 180180 RGB resolution, which was consistent with the input shape expected
by our custom model.

3.4.3 - Training and Validation Procedure

Rather than training a model from scratch, a pre-trained ResNet50 was opted as the foundation
for our Indian Sign Language (ISL) alphabet classifier. This approach is known as transfer
learning. It leverages the fact that the early layers of ResNet50 already recognize essential
visual features such as edges, shapes, and textures. These features are also relevant for
identifying hand gestures. So, instead of reinventing the wheel, the focus was on teaching the
model the specific patterns associated with the 26 ISL letters.

Adopting the classic feature extraction strategy for training was used for training. It involved
freezing the pre-trained ResNet50 base (trainable = False) and training only the new layers that
were added. Even with this simple setup, the model performed strongly. Although fine-tuning
was considered, it was not implemented in this version due to time and resource constraints.

Adam optimizer is known for its efficiency and the ability to automatically adjust the learning rate
during training. Therefore, it was decided to use Adam for optimization. A learning rate of 0.001
(1e-3) was selected to ensure stable and effective learning. Furthermore, categorical cross-
entropy, which is standard for multi-class classification tasks, was employed. This function
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measures the difference between the predicted probabilities and the actual class labels. It
guides the model to improve its prediction over time. Early stopping was implemented to prevent
overfitting and conserve computational resources. During training, the validation loss was
monitored, and if it did not improve for three consecutive epochs, the training process was
halted.

In summary, the final model consisted of a ResNet50 backbone with a custom classification
head trained on 180x180 RGB input images, using a batch size of 32. Only the top layers were
trained, while the pre-trained ResNet50 base remained frozen. This approach resulted in a
robust and efficient model that generalized well to unseen data, delivering high performance
without the need for excessive training time or data.

Training Results (observed during this process): After fine-tuning, the model reached a training
accuracy of ~99% and a validation accuracy of around 96% by the final epoch. The training loss
decreased to a very low value (on the order of 0.01), and validation loss also became low and
stable. These figures indicated that the model learned the classes well without significant
overfitting (the validation accuracy being close to training accuracy is a good sign). One reason
overfitting was kept in check is the extensive augmentation. We also computed precision and
recall per class on the validation set to ensure that each letter was being learned. Most letters
had precision and recall in the 90-100% range, with a few slightly lower due to confusion (for
example, on validation data, the model sometimes confused J vs k). These insights helped to
understand the limitation of the dataset’s variation in terms of lighting, background, etc.

3.5 - Real-Time Inference Implementation

Once the trained model achieved high accuracy on static images, the next step was to deploy it
in a real-time system that can translate gestures through a webcam. The real-time translation
pipeline was built to capture live video, process each frame using the model, and display the
predicted output.

To capture the webcam feed, a predict_webcam.py was made which used OpenCV. Each frame
captured from the webcam is initially in OpenCV’s default BRG format. It is converted to RGB,
and then resized to 180%180 pixels. Next, The frame is passed through ResNet50’s standard
preprocess_input() function, ensuring consistency with the training pipeline.The model outputs a
probability distribution over the 26 alphabet classes (A-Z), and the letter with the highest
confidence is selected as the prediction. The letter that was predicted is displayed on the screen

along with the confidence.
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No additional hand tracking, gesture segmentation, or bounding box cropping was implemented.
The entire frame is resized and used directly for prediction. Users are expected to hold their
signing hand clearly in the camera view, ideally centered, for optimal recognition. This real-time
prediction system demonstrates how the trained model can be deployed for live gesture
recognition using minimal infrastructure. It provides immediate visual feedback, making it a
functional prototype for interactive ISL translation.

In summary, the real-time system was a straightforward application wrapping the trained model.
It demonstrated the viability of using the model outside of an offline environment. The design
prioritized clarity and displaying results. It's understood that advanced feature like automatic
hand tracking were beyond the scope of this initial implementation.

3.6 - Custom Techniques and Considerations

Some of the optional design considerations that were experimented with initially, were not used
in the final version. Still several of the ideas helped shape the eventual direction of the project.
One of these was the consideration of class weighting. This is normally used when a dataset is
imbalanced, allowing the model to favor the minority classes when training. In this case, the
dataset was already fairly balanced, with all 26 alphabet classes (A-Z) being of roughly the
same size. Since no class was overly imbalanced, no class weighting was needed.

Second, the model was intentionally simplified. A ResNet50 model with ImageNet-trained
weights was used as the backbone. A custom classification head was then placed on top of it,
predicting the 26 ISL alphabet signs. No ensemble models and no architectural improvements
were utilized, as the intention was to make the system run real-time efficiently without
complicating the design. With regards to training strategy, fine-tuning the lower layers was
considered, but it was not performed for the final deployment. Because of the small size of the
dataset, the base model being unfrozen was likely cause overfitting. The less complex strategy

also saved training time with litle compromise on accuracy.

Real-time prediction stability was also of special importance. A recommendation was smoothing
out jittery outputs by averaging predictions over a series of frames. In practice, the predictions
were already fairly consistent, though, when users held each of the signs for a short period.
With the robust results and the aim of keeping latency low, frame averaging was excluded from

the final implementation. A simple yet functional user interface was developed using OpenCV.
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The detected sign and the level of confidence were indicated on the real-time video stream, with
instant graphical feedback. More sophisticated capabilities like a scrolling history of detected
signs, side bars for word construction, or generation of speech would have been achievable but
were outside the scope of the project.

Typically, the strategy had a linear and practical order: preprocess and prepare the data, train a
pretrained model, data augmentation for making the data stronger, train and validate the model,
and deploy it on a real-time system. All the decisions were based on findings from similar
studies and validated for confirmation. The following section holds the results of this approach,
including model accuracy, examples of predictions, and real-life analysis of the system's
performance when run live.

3.7 - Adaptation of Initial Plan

The original concept was for a web-based user interface and text-to-speech (TTS) capability as
well as a real-time Indian Sign Language (ISL) recognition system built utilising MediaPipe for
landmark extraction technique for gesture classification. However, the project scope and
technical approach were changed during development. This was done in order to better fit the
available resources, data constraints, and schedule. The final project emphasised an image-
based gesture detection strategy employing ResNet50 model trained on ISL alphabet images
rather than hand landmarks technigue. Several elements motivated this shift: the challenge of
acquiring large, labelled landmark-based ISL datasets, the burden of applying precise landmark-
to-gesture mapping, and the high performance and accessibility of pretrained image
classification models for static signs. The suggested online application and complete TTS
integration were also swapped out for a more concentrated desktop-based prototype using
OpenCYV for real-time webcam input and on-screen text feedback. While simplifying deployment
and lowering development complexity, this let the project keep real-time functionality and robust
user engagement.

Although the last system varies from the original design in some technical details, it still fulfils
the fundamental goals: enabling real-time ISL alphabet recognition, delivering accurate user
feedback, and showing the possibilities of deep learning and computer vision in assistive
communication tools.
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4 - Results and Evaluation

This chapter presents the outcome of the sign language classification project in terms of the
performance of the ResNet50-based hand recognition model and the real-time prediction
system with the webcam. The outcome is quantified in terms of the project requirements and the
process used and discusses the performance of the system, its limitations and its strengths.

4.1 - Model Accuracy and Loss

Following the training process, the model performed well on the evaluation dataset used to
assess its performance. The final test accuracy was about 96.4%, meaning that the model
correctly identified almost 96 images from 100 gestures on average. This attests to the fact that
the ResNet50 feature-extraction-based model was trained to distinguish correctly between the
26 static signs in the ISL alphabet. This accuracy greatly surpasses chance accuracy of ~3.8%
on a 26-class classification problem and shows that the model has acquired strong and
characteristic visual features regarding hand gestures. The accuracy was consistent with
accuracy in the validation accuracy in the course of training and reached a plateau at about
99%, with minimal indication of overfitting and good generalizability.

Throughout the training process, the learning curve of the model was healthy; the loss in
training began at approximately 2.5 and steadily dropped to less than 0.1. Second, validation
loss was similarly trending downward and leveled at 0.2. Training accuracy increased sharply to
well over 92% in the initial epochs and kept improving steadily. The final accuracy in training
was [insert final train accuracy, e.g., 99%], with the accuracy in validation leveling at 98%.

The gap between training and validation accuracy was small, suggesting the model did not
significantly overfit, thanks to techniques like data augmentation, dropout, L2 regularization, and
early stopping. The final model was selected from the epoch where validation performance was
optimal.

4.2 - Confusion Matrix Analysis
To gain deeper insight into which gestures the model confuses, we analyze the confusion matrix

of the model's predictions on the validation set.The confusion matrix is a 26x26 grid that
visualizes how often each true class is predicted correctly or misclassified. Each cell [ij]
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indicates how many instances of class j were classified as class i. The confusion matrix for this
model is shown in Figure 2.

Confusion Matrix for Sign Language Classification
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Figure 3. Confusion Matrix for the model

Key insights from the confusion matrix (Figure 2):

Most entries are concentrated along the diagonal, which aligns with the high overall accuracy
(nearly all instances are correctly on the diagonal).

The diagonal values for many letters like M, N and O are at or very near the total number of test
samples for that class, indicating perfect or near-perfect classification for those letters.

The off-diagonal entries are few. The largest confusion was observed between a couple of
specific pairs of letters:
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J and K: The model sometimes confuses the ISL signs for "J" vs "K". In ISL, the signs for J and
K are very complex. They both involve the use of two hands and while J is a dynamic sign, K
makes the use of two index fingers to form a K. The confusion matrix showed that out of the
2000 test images for "J", 385 were misclassified as "K". This is understandable because the
visual difference can be subtle and might depend on the angle of view. Despite this, K still had
high precision and recall >95%.

UvsV,and Lvs C, |: The letters U and V in ISL follows the classic confusion. In ASL alphabets,
U and V are distinguished by separating the two fingers or keeping them together. However, in
ISL, U and V are very similar. The signer is expected to make their respective shape (thumb and
index finger in the case of U and index and middle finger in the case of V) while keeping the
back of their palm facing towards the camera. Our model had a handful of errors in this area.
Apart from this, the model has also confused the letters C and | for the letter L. This is because
both L and | uses a straight index finger, and the model fails to account for the missing thumb
position. In case of C, the model is not able to take into account, the bend of the index finger
and the thumb. Thus, mistakes it for an L. However, additional training data for these cases and
perhaps specialized augmentation (rotating the hand slightly) could further mitigate this.

Virtually all other letters were recognized with near 100% accuracy in the test set.Letters such
as "M", "N", "O", and "Z" achieved near-perfect or perfect classification, with no off-diagonal
errors. This indicates the model’s internal feature representations successfully capture those
distinct shapes.

No signs of systematic bias were found. No class was disproportionately predicted or neglected.
The balanced dataset and uniform preprocessing likely contributed to the even performance
across all letters. The confusion matrix confirms that most errors were limited to subtle, visually
similar pairs, and performance remained robust across all signs.

Given these results, the model’s errors are mostly limited to confusions between visually similar
gestures. This is expected, as even human interpreters might need context to distinguish some
finger-spelled letters. In practical use, if one letter is misrecognized as a similar one, the user
could repeat or slightly adjust their hand pose to get the correct output, which is a minor
inconvenience.

4.3 - Real-Time System Evaluation

The real-time sign language translation system was put to the test in an indoor setup using just
a standard webcam. The evaluation mainly looked at how accurate, fast, and user-friendly the
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system was. Overall, it performed quite well, especially when users followed a few simple
instructions, like keeping their hand inside a specific area on the screen and pausing briefly after
each sign.

4.3.1 - Accuracy in Real-Time

In terms of accuracy, the system did a solid job recognizing most hand signs, as long as users
stayed within the ideal conditions: facing the camera, holding their hand steady, and having
decent lighting. Under those circumstances, the model hit over 90% confidence during live use,
based on informal tests. Most of the errors weren’t due to flaws in the model itself but came
from everyday hiccups like users moving too fast, having only part of the hand in view, or
dealing with uneven lighting. If someone held their hand too far from the webcam, or didn’t
pause between signs, the results became less reliable. But with a quick pause between letters,
the system consistently got things right. It's worth noting that the system was built to recognize
individual letters and not full, flowing sign language. It's basically a digital finger-spelling tool.
When users tried to quickly spell words without pausing, the model sometimes got tripped up by
the transitions between letters. These in-between moments didn’t match any known sign, so the
predictions could go off track. Encouraging users to pause between letters helped solve that.

From a usability standpoint, feedback was generally positive. People found the interface easy.
They could see their hand in the video feed, and the predicted letter showed up in real time.
After a short learning curve to get the hang of positioning and distance, users were able to sign
letters and get accurate feedback. For those unfamiliar with sign language, a printed ISL
alphabet chart was available, and even their first-time attempts were often recognized, showing
the model’s flexibility in interpreting a range of hand shapes.

PROBLEMS @ OUTPUT  DEBUG CONSOLE  TERMINAL  PORTS Figure 4.
Validation

Accuracy and
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Total params: (92.01 MB)
Trainable params: (2.03 MB)
Non-trainable params: (89.98 MB)
Optimizer params: 2 (12.00 B)
Found 50828 files belonging to 26 classes.
Found 50828 files belonging to 26 classes.
Using 10165 files for validation.
1589/1589 633s 398ms/step — accuracy: 0.9532 - loss: 0.4297
Test Loss: 0.4019
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4.3.2 - Comparison to Literature / Expectations

The gesture recognition model reached an overall accuracy of 96%, which is slightly below the
98-99% figures reported in some other studies (Saini et al., 2023). But context really matters
here. A lot of those higher numbers come from models tested in more robust environments. For
example, different lighting, different background, and often different people doing the gestures in
both training and testing phases. Our dataset, by comparison, was much less varied. It included
images from a single source along with a self-captured dataset. So, considering that, 96%
accuracy is actually a strong result. It suggests the model isn’t just memorizing patterns but
learning to generalize, which is crucial for real-world use. And realistically, when accuracy is
above 95%, users can usually just repeat or slightly adjust a gesture if it's misread, and the
system still works smoothly (Vashisth et al., 2023).

In terms of performance, the system achieved what it set out to do and proved that a trained
model can be used in real time, with just a regular webcam. It captures video, processes each
frame, and predicts letters with minimal delay. That live interaction is a huge step beyond offline
experiments and shows the system is practical, not just theoretical. It's a fully functioning
prototype that responds to hand gestures on the fly, which is exactly what the project aimed for.

4.3.3 - Limitations and Lessons

Sure, there are some limitations to be aware of. One of the big ones is dataset bias. The model
was trained on images with certain lighting conditions, hand sizes, and skin tones. While the
model mostly relies on shape to recognize signs, it’s still possible that users with very different
hand features, like darker or lighter skin, tattoos, rings, or even brightly colored nail polish, might
see a small dip in accuracy. The lack of broader training data means there's less guarantee for
the same accuracy across all demographics. A more diverse dataset would definitely help make
the model more robust.

Another challenge comes from using webcams in less-than-ideal environments. The model itself
is solid, but things like poor lighting or a cluttered background can trip it up. If the room is too
dark, the webcam feed gets noisy. This makes it harder for the model to pick up on hand
shapes. These aren’t problems with the model itself but with the setup. Adding things like hand
detection or automatic brightness adjustments could go a long way toward fixing these issues,
but they weren’t part of this simpler version of the system.One more limitation is that the model
only handles static gestures one frame at a time. That works just fine for finger spelling, where
each letter has a static pose, but it struggles with signs that involve motion. For example, the
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letter "J" didn’t get recognized consistently. Since the model was trained only on still images, it
doesn’t understand motion or gestures that play out over multiple frames. Supporting dynamic
gestures would require more advanced models like RNNs, 3D CNNs, or transformers. They
would be a better option since they can process sequences instead of snapshots.

Despite the limitations, the project came with a lot of valuable lessons. One of the big
takeaways was the tradeoff between model complexity and real-time performance. Sure, deeper
models might be more accurate, but they’re also slower. ResNet50 turned out to be a great
middle ground. Another important lesson was that the model isn’t everything. The entire user
experience matters. Even a well-trained model can struggle if the camera setup is off, the
lighting is bad, or users aren’t sure how to position their hands. Building a successful system
means thinking beyond the model and designing the whole interaction.
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5 - Conclusion and Future Work

5.1 - Conclusion

This project set out to develop a real-time Indian Sign Language gesture recognition and
translation system, focusing on the ISL alphabet as a case study. By the end of the project, that
aim was completely fulfilled. A deep learning-based system that can identify and translate static
hand gestures of the ISL alphabet with a high degree of accuracy (96%) has been achieved.
The system leverages a custom ResNet50 CNN model to perform the core recognition task and
uses a simple yet effective approach to integrate this model into a live webcam-based interface.
Instead of starting again, a transfer learning strategy was applied, removing the model's top
classification layer and inserting a new head meant to identify 26 hand sign types. From the
standpoint of implementation, Python and OpenCV were used to create a real-time system. It
captures webcam frames, interprets them, and feeds them to the model for predictions. Users
receive instant feedback since the expected letter and confidence score appear right on the
video feed.

Many significant results were obtained during the course of the research. Augmentation helped
to create and improve a clean, useable ISL alphabet dataset. It increased the variety of hand
sizes and angles that the model could train on. Given the dataset's modest size and diversity,
that was particularly crucial. Strong outcomes came from training and testing the ResNet50-
based model. Using conventional hardware, a live, functioning prototype was created that
obviously shows the promise of gesture recognition. The system was eventually put to use in
the actual world to highlight its advantages as well as its shortcomings.

Naturally, like any first iteration, this system has certain constraints. It only identifies static
movements. This entails that dynamic movement doesn't work. Moreover, given that it lacks a
specific hand detector or image pre-processing for illumination, it's highly sensitive to lighting
and background clutter. That stated, within the project range, these constraints were anticipated
and managed as much as feasible. Under typical, supervised circumstances, the system still
operates consistently well, and it demonstrates how Al and computer vision may help enable
accessible communication in the future. The project also provided insightful education along the
way. Having a good model turned out to be only one part of the puzzle; preprocessing, user
interface, feedback systems, and general system design are equally vital. The modular design
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facilitated rapid changes and testing. Working with actual users revealed problems that offline
testing by itself would not have identified.

This offers a basis for future development in the Indian Sign Language community and
demonstrates how deep learning may be used to solve practical, human-centered issues.
Ultimately, this project successfully created a real-time Indian Sign Language (ISL) alphabet
recognition system that works using just a trained model and a regular webcam. It shows how
much machine learning and computer vision have advanced, and how they can be used to build
helpful tools. Most importantly, it highlights the potential to reduce communication barriers for
430 million people relying upon sign language by making technology more inclusive and
accessible

5.2 - Future Work

Although the project achieved its primary objectives, there is still much interesting possibility for
where it could go next. The system now does a good job of identifying static ISL alphabet signs
using a trained model and a webcam. Real-world sign language, however, is far richer and
dynamic than single letters, and there are many interesting ways to carry on this effort.

Expanding the system's vocabulary beyond the alphabet would be one of the most immediate
and useful changes. Future iterations could identify complete sentences or common ISL

phrases like "hello," "thank you," "yes," or "no" instead of users spelling out every word. That
would allow the model to be used far more in daily conversations. Getting there requires training
the algorithm on a bigger dataset with whole-word gestures, including Hindi numerical and
vowel signals to broaden its reach. For that purpose, datasets like the one by Singh et al. (2022)

that include Hindi vowels and numerals could be incorporated.

Secondly, enabling the system to manage dynamic gestures, those involving movement rather
than a single static posture would be another significant advance. Currently, the model
examines each frame separately. Hence, it has difficulty handling motions or signs for complete
sentences needing motion. Future versions could include transformer-based models meant for
video input, 3D CNNs, LSTMs, or even sequence-based ones (Baihan et al., 2024). These
would enable the system to see gestures as motion over time, hence improving its accuracy and
realism. Also, the present configuration mainly works well only if users put their hand in a certain
screen area, which is not always clear. Automatic hand tracking would remove that restriction
and greatly improve the smoothness of the experience (Vashisth et al., 2023). A hand detection
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model in the preprocessing pipeline, like MediaPipe, could locate the hand and direct the
recognition process accordingly. In various settings, this would greatly increase the system's
adaptability and user-friendliness.

Better management of uncertain forecasts would be another little but significant change. For
example, if the model lacks confidence in what it observes, it can just tell the user to try again
rather than displaying a possibly erroneous outcome. In live environments, something like a
majority vote method (Nguyen and Le, 2022) over the last few frames could also assist in
stabilising the forecasts and avoid flickering output while the hand is somewhat
moving. Adapting the system for mobile or embedded platforms is a useful path to reach more
people, particularly those on the go. It would allow consumers to carry the translator with them
wherever they go. Naturally, this would call for some model optimisation to maintain speed and
efficiency, perhaps even changing it to a format like TensorFlow Lite. Looking even further
forward, one may also consider the prospect of constructing a bidirectional ISL translator. The
system now converts signs into text or speech, but it may go the other way as well, turning
spoken or typed words into sign language using a robotic hand or animated avatar. This has
already been achieved for Spanish Sign Language (San-Segundo et al., 2008). In cases when
interpreters are unavailable, that would allow for entirely two-way communication.
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6 - Project Management Review

This section reflects on the management aspects of the project, including how the project
timeline was planned and executed. It presents the tools and practices used for task
management and lessons learned regarding project management. It provides a retrospective
analysis of what went according to plan and what needed adjustment during the course of the
project. It compares the initial planning (as outlined in the project outline and Gantt chart) with
the actual development and progress made.

6.1 Timeline and Gantt Chart Summary

Initial Research and Literature Review: At the start of the project, a detailed Gantt chart was
prepared outlining key phases, including dataset collection, real-time hand landmark detection,
gesture classification, text and speech translation, user interface development, and testing. The
timeline provided structured guidance, and though some phases evolved from the original plan,
the project stayed within its scope and deadline.

10 ‘11 |12 ‘2025 |02 |03

Dataset Collection — 17 days
and Preparation 4

Data labeling and _ 15 days

preprocessing

Landmark Detection o

Text and Speech Translation Integration - 10 days

Testing and Debugging - 8 days

Figure 5. Original Gantt Chart (Reproduced from project outline (Bhavsar, 2024))

Dataset Acquisition/Preparation: Planned: Weeks 3—6 to find or create the dataset. Actual:
This happened in weeks 4-7. The first planned phase was Dataset Collection and Preparation,
scheduled to span 17 days (late October into November). This phase was completed as
planned, though the scope of the dataset shifted. Instead of collecting hand landmark data
compatible with MediaPipe, the focus shifted to static image-based ISL gesture data, which was
more practical for training with ResNet50. This adjustment enabled earlier training experiments
and aligned better with available resources. There was a slight delay as obtaining ISL images
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took time. We adjusted by overlapping some of the model design work with the tail end of data
gathering. The Gantt chart was updated to reflect that data prep continued alongside the
beginning of model setup. Data labeling and preprocessing was carried out effectively within its
planned 15-day window. Labeling was straightforward due to the alphabetical nature of the
dataset, and the class distribution was verified before training.

The Real-Time Hand Landmark Detection task, initially planned as a key milestone using
MediaPipe, was not implemented in the final system. Instead, the project pivoted to an image-
based recognition pipeline using ResNet50 and OpenCV. This change significantly reduced
system complexity while still achieving real-time performance. As a result, the time allocated for
this phase was instead used to accelerate model development and early testing. Gesture
Classification, originally intended to follow the landmark detection phase, became the central
focus of the system. This phase began slightly earlier than scheduled and ran across the full
training and evaluation window (about 6 weeks), as shown in the chart. Data augmentation was
also integrated during this phase, and early stopping was used to ensure training efficiency. The
Text and Speech Translation Integration, originally scheduled for 10 days, was partially
implemented. While text output was successfully integrated and displayed in real time, the text-
to-speech (TTS) feature was deprioritized due to time and scope constraints. The project’s focus
shifted toward stabilizing real-time gesture prediction and usability, which was a more immediate
priority.

Testing and Evaluation was planned for the final 8 days, and this phase was carried out as
scheduled. Testing included informal trials under varying lighting conditions, distances, and
hand placements. Early debugging was also iteratively integrated throughout the project. For
example, prediction accuracy and responsiveness were tested as soon as the model was
integrated with the webcam. Overall, the Gantt chart proved helpful in structuring the timeline
and task dependencies. While certain tasks were modified or skipped, these decisions were
made to ensure feasibility within the academic term and available resources. The project
remained within the original duration and met its core objectives. This project highlighted the
importance of flexibility in execution. Although the technical approach changed from the initial
plan, the final system still achieved a working, real-time ISL alphabet recognition prototype. The
ability to adapt while keeping the primary goal in focus contributed greatly to the project’s
success.

Documentation and Final Report Writing: This task was planned to begin around February
2025 and continue throughout the project, with the final compilation and editing scheduled for
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late March 2025. In practice, the report writing was carried out incrementally, with several
sections drafted alongside project milestones. For instance, the Methodology chapter was
developed around December 2024, once the technical approach was finalized. Initial results and
evaluation findings were documented as they became available, particularly in January 2025.
The final two weeks were dedicated to compiling all chapters, formatting, proofreading, and
adding final visual elements such as the confusion matrix and accuracy plots. Writing sections
earlier in the timeline, such as the Literature Review and Project Plan, proved to be an effective
strategy and reduced last-minute pressure. According to the Gantt chart, the final report was
scheduled to be completed by the end of March 2025, and this deadline was successfully met.

Further Revised Gantt Chart (Extended to Mid-Jan)

Documentation & Report Writing | _
Testing and Evaluation -

Text Output Integration f

Project Tasks

Gesture Classification |

Data Labeling and Preprocessing |

Dataset Collection and Preparation -

Timeline

Figure 6. Revised Gantt chart

This project underscores the importance of flexibility and iterative decision-making in project
management. Although the technical path diverged from the initial proposal, the primary
objective remained central throughout. The ability to adapt to real-world challenges without
losing sight of the end goal was a key contributor to the project’s overall success. The original
roadmap provided essential guidance, while thoughtful deviations allowed the system to evolve
in a realistic and achievable direction. The experience reinforced the value of agile planning
(Chin, 2004), early prototyping, and user-focused development. All of these are crucial when
managing technology projects with real-time performance and usability considerations.

37



6.2 - Risks and Mitigation

During the project's planning stage, several major risks were noted, and suitable mitigating
actions were taken to handle them. This guaranteed that the project stayed on course and
achieved its goals even in case of any difficulties.

The possibility of not finding a good ISL dataset was one of the initial issues. A plan was to build
a custom dataset if a good publicly accessible one was unavailable. A curated collection of ISL
alphabet images was assembled and preprocessed. This method was carried out effectively.
More time in the project timeline had been set aside to assist in this task, which helped to
prevent delays in the next phases. The likelihood of the model not reaching the required degree
of classification accuracy was another major concern. Several fallback plans were developed to
reduce this. These consisted of using more aggressive data augmentation methods to enhance
generalisation. Basic success was defined by a minimum goal accuracy of 85%. Practically, the
chosen method using ResNet50 surpassed this bar, reaching about 96% accuracy on the
validation set. This outcome confirmed the choice of model and lessened the need to rely on
secondary tactics. Integration risks were also taken into account, especially in merging the
trained model with camera input and real-time prediction output. Such activities sometimes
create unanticipated performance or compatibility problems. Integration was not left to the end;
rather, early testing was done with a partially trained model to lower the risk.

By means of this mix of forward planning, early prototyping, and adaptable fallback techniques,
the project was able to control risks and produce all intended results without major delays or
quality compromises.

6.3 - Lessons Learned in Project Management

Over the duration of this project, several important insights into efficient project management
were acquired. These ideas greatly helped the project's successful delivery and showed best
practices in handling complicated project tasks.

The necessity to stay flexible with the project plan was an important lesson. Although the Gantt
chart offered a planned timetable and milestones, the capacity to change was vital when data
collecting ran longer than anticipated. Time was transferred from less important tasks to keep
momentum on fundamental components instead of letting this postpone the whole process. This

38



underlined the need of dynamic prioritisation in project execution. Another constant difficulty

was time management, especially in juggling this assignment with other academic duties.
Consistent development was guaranteed by the planned timetable; defining modest, precise
weekly objectives was very successful. The micro-goals kept interest and guaranteed forward
movement by breaking the larger project into doable tasks. Apart from that, the project
concentrated on guaranteeing that the fundamental function was robust, accurate, and user-
friendly rather than trying to implement every anticipated feature. To emphasise a strong
implementation of the fundamental components, features like complete text-to-speech
integration were deprioritized. This strategy fit the idea that providing a fully working core
system is sometimes more important than showing a wide but unstable solution. Halfway
through the project, there were thoughts to add more functionality like a complete web interface
or multi-hand gesture detection. But the project remained focused by regularly coming back to
the initial goals and timetable. This approach guaranteed that the outputs were finished on
schedule and of excellent quality.

Looking back, the project was successfully delivered on time, fulfilling its main goals and
operating as planned. The management strategy which was based on early planning, adaptive
development, risk mitigation, and incremental progress proved successful. Dataset quality and
size are still crucial for machine learning performance. Therefore the only significant change if
the experiment were to be duplicated would be to start data collecting even earlier. Otherwise,
the approaches and strategies adopted in this project proved solid project management and
offered a strong platform for future work.
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Appendix A:

Code for Capturing Images

import cv2
import os
import time

dataset_dir = "dataset"
if not os.path.exists(dataset_dir):
os.makedirs(dataset_dir)

cap = cv2.VideoCapture(Q)
if not cap.isOpened():
print("Cannot open webcam")
exit()
print("Press keys A-Z to capture an image for that class.")
print("Press 'q' to quit.")
while True:
ret, frame = cap.read()
if not ret:
print("Failed to capture frame")
break

cv2.imshow("Webcam", frame)
key = cv2.waitKey(1) & OxFF
if key == ord('q"'):

break

if (65 <= key <= 90) or (97 <= key <= 122):
label = chr(key).upper()
class_dir = os.path.join(dataset_dir, label)
if not os.path.exists(class_dir)
os.makedirs(class_dir)

filename = os.path.join(class_dir, f"{time.time()}.jpg")
cv2.imwrite(filename, frame)
print(f"Saved image for class '{label}' to: {filename}")
cap.release()
cv2.destroyAllWindows ()
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